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The development of methods for direct, selective oxidation of
methane to value-added products continues to pose a major
challenge to chemists.1 Thirty years ago, Shilov and co-workers
reported the catalytic conversion of methane to methanol and
chloromethane by aqueous Pt salts.1e,2 Since then, the classical
Shilov system as well as model systems have been the subject of
detailed investigations. The accumulated evidence suggests that
three major steps, each of which gives rise to intriguing mechanistic
possibilities, constitute the catalytic system (Scheme 1).1d

Experimental3 and theoretical3d,4 studies of relevant Pt systems
have focused mostly on the initial C-H activation step, which is
considered to yield a Pt(IV) hydridoalkyl species by oxidative
addition of R-H. H/D scrambling between labeled hydride and
methyl ligands during alkane elimination imply the intermediacy
of (as yet unobserved) Pt(II)σ-alkane complexes, as well as their
facile interconversion with Pt(IV) hydridoalkyl species.3c-d,5 The
mechanism requires the loss of a proton as X-H, but it has not
been firmly established whether the deprotonation occurs from the
Pt(IV) hydridoalkyl or the Pt(II)σ-alkane complex. Experimentally,
these reactions have been investigated through the microscopic
reverse of the C-H activation, that is, protonation of Pt(II) alkyl
precursors. Hydridoalkyl Pt(IV) species have been observed during
low-temperature protonations,3a,d,5a-c,6 and it has been asserted that
the metal must be the preferred site of protonation. However, the
observation of such hydrides only identifies thethermodynamicsite
of protonation. It is still possible that these hydrides are preceded
by unobservedkinetic products that rapidly rearrange to the
observed hydrides. We now present evidence that at least under
the applied conditions (vide infra), it is the metal center of Pt(II)
dialkyl complexes that is the kinetically preferred site of protonation.

The strategy that has been applied to probe this issue is delineated
in Scheme 2. Initial protonation of the Pt(II) dimethyl complex1
produces a five-coordinate7 Pt(IV) hydridomethyl complex2 by
metal protonation or a Pt(II)σ-methane complex3 by protonation
at a methyl ligand. It is well established5 that species such as2
and3 undergo facile interconversion. Intermediate2 is irreversibly
(vide infra) trapped by MeCN to produce the observed4. The σ
complex3 is also irreversibly trapped by MeCN by associative
displacement8 of the methane ligand to give Pt(II) complex5. Both
trapping processes are intermolecular and should exhibit first-order
dependencies on [MeCN], whereas the intramolecular interconver-
sion between2 and 3 is [MeCN] independent. This results in a
diagnostic dependence of the5:4 product ratio on [MeCN],
depending on the relative magnitudes of the rate constantsk1, k-1,
k2, andk3. If k1 andk-1 are rapid compared tok2[MeCN] andk3-
[MeCN], the 5:4 ratio will be independent of [MeCN] and also
independent of the identity of the protonation site. The Curtin-

Hammett principle applies,9 and the product ratio will only depend
on the relative magnitudes ofk2 andk3. On the other hand, ifk1

andk-1 are very slow compared tok2[MeCN] andk3[MeCN], the
5:4 ratio will reflect the relative occurrence of Pt versus methyl
protonation but will still be independent of [MeCN]. Finally, if the
interconversion between2 and3 and trapping by MeCN occur at
comparable rates, the5:4 ratio will be [MeCN]-dependent: If initial
protonation occurs at Pt to give2, an increase of [MeCN] will trap
2 more efficiently, inhibiting the interconversion of2 to 3.
Increasing [MeCN] therefore decreases the5:4 ratio. In contrast,
initial protonation at a methyl group to give3 will cause the5:4
ratio to increase with increasing [MeCN].

A series of experiments has been conducted in which (diimine)-
PtMe2 complexes1a-c were protonated with ca. 4 equiv10 of
HBF4‚Et2O in CD2Cl2 at -78 °C in the presence of variable
amounts of MeCN-d3.11-13 The products4 and 5 were readily
observed by1H NMR at this temperature, and the5:4 product ratios
were obtained by integration of selected1H NMR signals.14 Figure
1 summarizes the results, expressed as the yield of5 relative to
the combined yields of4 and 5, as a function of [MeCN] in the
0.03-5.5 M range. It can be immediately seen that for all three
series, the relative yield of5 decreases with increasing [MeCN].
This result is consistent with initial protonation occurring exclu-
siVely or mostly at Pt.15
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The N-aryl groups of the diimine are oriented more or less
perpendicularly with respect to the coordination plane in1.3f,i Bulky
2,6-substituents exert a significant steric hindrance of the empty
apical coordination site in2. The three complexes1a-c qualitatively
show the same response to increasing [MeCN], but significant
quantitative differences may be understood in terms of these steric
effects. Complex1c, unsubstituted in the 2,6-positions, is effectively
trapped after protonation at very low [MeCN]sthe relative yield
of 4c through efficient trapping of2c is greater than 95% even at
0.1 M MeCN. For2a, which is 2,6-dimethyl-substituted, trapping
is less efficient, and ca. 5 M MeCN is required to achieve a 95%
trapping yield of4a. Finally, for1b, with the much bulkier isopropyl
substituents, trapping as4b is only 90% efficient even at this
concentration.16

In conclusion, we have shown that protonation of a series of
(diimine)PtMe2 complexes occurs preferentially at Pt as opposed
to at a methyl ligand. The principle of microscopic reversibility
then dictates that the deprotonation step in the general Shilov
mechanism must occur from the Pt(IV) hydridomethyl, rather than
the Pt(II) σ-methane, species. We anticipate that the competitive
trapping technique described herein will be useful for further
mechanistic studies and provide further insight into how the site
of protonation/deprotonation may depend on metal complex
structure, solvent, identity of acid, and other experimental param-
eters.
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Figure 1. Relative yield of5 () [5]/([5]+[4]) resulting from protonation
of 1a-c with HBF4‚Et2O. Filled symbols represent experiments conducted
at -78 °C, whereas open symbols derive from protonations at-40 °C.
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